Wide Band Power Analyzer System

 NORMA D 6000- Complete system for high end power analysis, flexible and modular
- Single to six phase models (1 to 12 channels)
- Highest precision (0.05% for current and voltage measurements, $<0.1 \%$ for power measurements)
- Frequency range DC to 1 MHz
- Calibration certificates valid for 24 months !
- Harmonic analysis DFT and FFT, integrated memory for measured values, graphic display
- Optimal versions for motor- and transformermeasurements

APPLICATIONS

For highest demands on precision

In many fields like developing laboratories and testing facilities, in quality assurance and also at commissioning on-site there are many demanding measuring problems to be solved. High precision, wide bandwidth and immunity to interference are advantages of the Power Analyzer NORMA D 6000 of LEM Instruments.
converters and drives electric cars, locomotives, .

switched mode power supplies	generators and motors				
electric and electronic components	applications know how	transformers		magnetic	complete solutions
:---:	:---:				
materials			household appliances		
:---:					
(mains interference)					

For Highest Demands on Flexibility

The system series D6000 is designed to be completely modular. There are basic instruments for six or twelve plug-in units, various current and voltage channels, interfaces and additional options. Resulting from that there are complete sets, optimized for standard, motor or transformer analysis, each in single-, three or six phase versions.

D 6000 S : Standard configuration

The standard configuration covers a wide field of applications. Extensions can be made quickly on-site by simply adding plug-in units.
D 6000 M : Motor and generator analysis.
The version M is extremely suitable for measurements on motors and generators. DC- , asynchronous, and synchronous motors, and special machines.
Torque, speed, mechanic shaft output, slip, efficiency and of course all the electrical parameters are measured precisely and simultaneously. High accuracy guarantees the exact determination of losses. Furthermore special dynamic measurements of torque can be made.
The viewing of torque in time domain shows torque harmonics. Up to twelve channels can work together simultaneously. It is possible to completly analyze converter drives.
All partial efficiencies and the total efficiency are calculated. Frequency spectrum, distortion factor, rectification factor, inversion factor, ripple of the intermediate circuit and other specific parameters can be determined.
D 6000 T: Transformer test
This version is designed specially for testing tranformers. It offers an even higher measuring accuracy at very small power factors. Accuracies of power measurements are better than 0.1% for power factors of 1 to 0.1 and 0.4% for power factors of 0.01 . This allows exact analysis.
The no-load power losses are corrected automatically in accordance with the form factor.
The single phase version of the D 6000 T is often used for measuring high quality capacitors and reactors.

D 6000 - THE POWER ANALYZING SYSTEM

For highest demands on analysis.

Flexible measuring conditions

By means of multiple modes of synchronization, filtering, triggering and averaging an optimal adaption to particular measuring tasks is possible.The shortest average time to get all measured values continuously is 14 ms .

Detailed analysis of distorted wave formes

Harmonics can be analized by means of Discrete Fourier
Transformation DFT (up to the 99th harmonic) or spectral lines by means of Fast Fourier Transformation (FFT) of currents, voltages and also power. The results can be presented numerically or graphically.

Formula editor

This function provides an online processing of measured values. In this way also partial efficiencies or fundamental efficiencies can be determined in addition to the standard total efficiency in real time.

Recording

An internal memory supports the recording of sampled or average values. Various trigger conditions are supported.

Graphic wave forms

Wave forms, transient dynamic events and trend analysis or even $x(y)$-diagrams are shown on the display.

Load and energy management

6 parameters can be user selected for simultaneous and continuous integration ($\Sigma \mathrm{Wh},-\mathrm{Wh}, \mathrm{VAh}$, varh, Ah ...). The recording shows e.g. the 24 -hour-profile for maximum demand analysis. Via measuring of the power factor compensation equipment can be checked. 6 freely programmable control outputs can be used for automatic switching of loads. The trigger can be set on user selected values.
Tests in conformance with standard IEC 1000-3
In prescribed tests of current harmonics and flicker according to appropriate standards the D 6000 offers full functionality and certified accuracy.
Tests of electric three-phase-machines
In addition to the electrical and mechanical parameters the determination of the airgap torque from the sampled values of current and voltages is possible in the D 6000. In this case no mechanic measuring shaft is necessary. An extended field of applications and dynamic failure preventing analysis are enabled.

(1) Graphics display

The electroluminescent monitor (512×256 pixels) offers many possibilities of numeric and graphic analysis. The $\lambda / 4$ antiglare glass filter provides a large viewing area during all lighting conditions.

(2) Settings

The major settings of the instrument are visible at first glance. So you are constantly informed about range selection, input level, operating modes, sampling and averaging, as well as integrators and memory function.

(3) User guided operation

Context relevant menu strips and control or entering keys make your individual settings easier. A user help text is available in several languages. In addition to 3 standard configurations 11 further individual configurations can be stored in order to be prepared for various applications. The recently used configuration is stored automatically.

(4) Thermal printer 61 P2

The graphics compatible printer (200 dpi) rapidly produces screen copies (25 m of paper per roll).

General data, Quality and Safety

Dimensions of basic instruments ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)
$4 \mathrm{HU}: 450 \times 190 \times 550 \mathrm{~mm}$ (19", 4 HU$)$
$8 \mathrm{HU}: 450 \times 370 \times 550 \mathrm{~mm}$ (19", 8 HU)
Mass: Complete instrument
three-phase (6 plug-in units): approx. 16.5 kg six-phase (12 plug-in units): approx. 29.0 kg Temperature ranges: nominal temperature range: working temperature range: storage temperature range:
Protection type:
Protective class:
Climatic class:
S afety:

IP 30

KYG as per DIN VDE 40040, humidity max. 85\%, no dewing IEC 61010-1, EN 61010-1 max. voltage against earth 1kV CATIII Verschmutzungsgrad 2

Test voltages
of the input-channels:
Voltage plug-in 61U1:
Voltage plug-in 61U2:
$\mathrm{HI}-\mathrm{LO} / \mathrm{G}-\mathrm{PE}: 6 \mathrm{kV}_{\mathrm{RMS}} / 50 \mathrm{~Hz} / 1 \mathrm{~min}$
HI - LO: test pulse $8 \mathrm{kV} / 1.2 / 50 \mu \mathrm{~s}$
HI - LO: test pulse $1.5 \mathrm{kV} / 1.2 / 50 \mu \mathrm{~s}$
Current plug-in 61I1, 6112 : $\mathrm{HI}-\mathrm{LO}: 250 \mathrm{~V}_{\mathrm{RMS}} / 50 \mathrm{~Hz}$
Current plug-in 61I3: $\quad \mathrm{HI}-\mathrm{LO}: 150 \mathrm{~V}_{\text {RMS }} / 50 \mathrm{~Hz}$
Transient influence: mains input : standard test pulse $3 \mathrm{kV}, 1.2 / 50 \mu \mathrm{~s}$
Test voltage: mains - PE: $1.5 \mathrm{kV}_{\text {RMS }} / 50 \mathrm{~Hz}$
CE: \quad Certificate of conformity according to the guide
lines for emission and immission standards
Mechanical strength:
DIN VDE 57411 page 1 / DIN VDE 0411 part 1, chapter 11
Vibration test : test in normal position in all three directions with 0.35 mm amplitude and $10 \ldots 100 \mathrm{~Hz}$.
approx. 14 g .

D 6000 - THE POWER ANALYZER SYSTEM

For highest demands on the technology of instruments

Essential for highest precision are the linear frequency response and the computation of measured quantities independent of waveshape. Moreover there are exact simultaneous sampling and minimal angular errors relevant for accurate measurement of power. The D 6000 achieves a continuous frequency range from DC to 1 MHz (bandwidth 2 MHz) with high linearity and small amplitudeerrors down to 0.05%. Simultaneous sampling of up to 12 channels results in angular errors as small as a few millidegrees. Because of that you get results of highest accuracy, also in measuring of mixed quantities, distorted waveforms, high frequencies and small power factors.
In developing this analyzer considerable attention was paid to high immunity to interference. Because of sophisticated double screening and additional GUARD-inputs a common mode rejection of up to 135 dB at 100 kHz is achieved. Even with extremely variable floating potentials your measurements are accurate. This excellent common mode rejection is of great benefit for applications of frequency converters and electronic lighting equipment.

The system D 6000 meets the demands of flexibility, accuracy and immunity to interference also by using cylindrically designed and screened triaxial shunts.

Calibration

The power analyzers have been designed, produced and tested as per ISO 9001 and as standard are delivered with a calibration certificate. Via our calibration laboratory the measured quantities are traceable to international standards.

We exclusively use high-quality components and therefore we can extend the validity of the specifications to $\mathbf{2 4}$ months. Thus you save a lot of time and money for recalibration.

Reliable measuring results are guaranteed.

Flexibility

Owing to the modular design the D 6000 can be supplied with user selected voltage and current channels. All channels are calibrated on their own; no recalibration is necessary after changing channels. The inputs are floating and galvanically isolated from each other. The voltage channels are designed for measurements from 50 $\mathrm{mV}_{\text {RMS }}$ to $2500 \mathrm{~V}_{\text {PEAK }}$. The current channels are useable in connection with wide band triaxial shunts from $3 \mu A_{\text {RMS }}$ to $1500 A_{\text {RMS }}$. The calibrated shunt factor is automatically taken into account. For current measurements we also supply precision clamp-on transformers and solid core current transformers. Additional scale factors can be entered. The D 6000 even enables online correction for measuring transformer errors.

(6) PC - Interfaces - Automation

Various options include IEEE 488 and RS 232 for remote control, Centronics for direct transfer to a printer, up to 12 analog outputs and 6 relay outputs as well as additional inputs for torque and speed. The $D 6000$ system matches the requirements of integration into an automatic testing station. All analysis can be made on the D6000 system itself or easily transmitted to and displayed on a PC with the software Power Win 6000 in order to obtain test reports rapidly.

(7) Power Supply power consumption 110 VA

The supply takes place via fuses and can be switched either to $115 \mathrm{~V}(90-135 \mathrm{~V}$) or to 230 V ($187-264 \mathrm{~V}$), at 45 to 65 Hz . The power supply unit also contains an external trigger socket and an external synchronization socket.

Interface 61D1

IEEE-488 interface and 6 analog outputs (userdefined, with free assignment and scaling)

Analog outputs

Output voltage:

Output rate:
Permissible ext. overload: Additional error:
Resolution:
Rise time:
max. $\pm 10.5 \mathrm{~V}$; max. load 2 mA , short-circuit-proof, common LO at protective earth potential corresponding to the actual averaging period
max. $50 \mathrm{~V}_{\text {RMS }}$ at the HI input
\pm (0.15 \% of rdg +5 mV)
± 5000 digits for $\pm 10 \mathrm{~V}$
approx. 10 ms for 10 ... 90%

Interface 61D3

RS 232 and Centronics (for operation with an external printer)

Interface 61D2 Motor

IEEE-488, RS 232 and Centronics, 12 analog outputs and 6 relay outputs (controlling of the ext. relay box 61R1), inputs for torque and speed measurement.
Analog outputs: see interface 61D1

Torque input: analog

Measuring range: $-10 \mathrm{~V} \ldots 0 \mathrm{~V} \ldots+10 \mathrm{~V}$ (DC)
Sampling rate: $\quad 1.6 \mathrm{kHz}$
Accuracy:
Input resistance:
Overvoltage:
Speed inputs:
Frequency range:
Input voltage:
Accuracy:
Input resistance: $\pm(0.1 \%$ of rdg $+0.05 \%$ of rng) approx. $200 \mathrm{k} \Omega$ max. $50 \mathrm{~V}_{\text {RMS }}$ digital, 90° shifted
1 Hz ... 200 kHz max. $50 \mathrm{~V}_{\mathrm{RMS}}$ ± 0.01 \% of rdg approx. $200 \mathrm{k} \Omega$
Input n : speed measurement, Input d: direction of rotation

Voltage channel 61U1 with HI, LO and Guard inputs

Voltage channel 61 Ul Standard voltage channel with double screening and 3 safety inputs for HI, LO and GUARD.			Voltage channel 61 U2 Like voltage channel $61 \mathrm{U1}$ but with lower measuring ranges for measuring of low voltages or voltage drops. It is used for example for measuring of chokes, coils, varistors, PTC's and so on.		
Measuring range	Max. input		Measuring range	Max. input	
	DC, square	sine		DC, square	sine
$25 \mathrm{~V}_{\text {PEAK }}$	$25 \mathrm{~V}_{\text {RMS }}$	17 V RMS	$2.5 \mathrm{~V}_{\text {PEAK }}$	$2.5 \mathrm{~V}_{\text {RMS }}$	$1.7 \mathrm{~V}_{\mathrm{RMS}}$
45 V PEAK	$45 \mathrm{~V}_{\text {RMS }}$	32 V RMS	4.5 V PEAK	4.5 $\mathrm{V}_{\text {RMS }}$	$3.2 \mathrm{~V}_{\mathrm{RMS}}$
$90 \mathrm{~V}_{\text {PEAK }}$	$90 \mathrm{~V}_{\text {RMS }}$	$64 \mathrm{~V}_{\text {RMS }}$	$9 \mathrm{~V}_{\text {PEAK }}$	$9 \mathrm{~V}_{\text {RMS }}$	6.4 V $\mathrm{VMMS}^{\text {d }}$
$180 \mathrm{~V}_{\text {PEAK }}$	$180 \mathrm{~V}_{\text {RMS }}$	$128 \mathrm{~V}_{\text {RMS }}$	$18 \mathrm{~V}_{\text {PEAK }}$	$18 \mathrm{~V}_{\text {RMS }}$	12.8 V $\mathrm{RMS}^{\text {d }}$
$340 \mathrm{~V}_{\text {PEAK }}$	$340 \mathrm{~V}_{\text {RMS }}$	240 V RMS	$34 \mathrm{~V}_{\text {PEAK }}$	$34 \mathrm{~V}_{\text {RMS }}$	$24 \mathrm{~V}_{\text {RMS }}$
$670 V_{\text {PEAK }}$	$670 \mathrm{~V}_{\text {RMS }}$	$470 \mathrm{~V}_{\text {RMS }}$	$67 \mathrm{~V}_{\text {PEAK }}$	$67 \mathrm{~V}_{\text {RMS }}$	$47 \mathrm{~V}_{\text {RMS }}$
$1300 \mathrm{~V}_{\text {PEAK }}$	$1300 \mathrm{~V}_{\text {RMS }}$	$920 \mathrm{~V}_{\text {RMS }}$	$130 \mathrm{~V}_{\text {PEAK }}$	$130 \mathrm{~V}_{\text {RMS }}$	$92 \mathrm{~V}_{\text {RMS }}$
$2100 \mathrm{~V}_{\text {PEAK }}$	2100 V ${ }_{\text {RMS }}$	$1500 \mathrm{~V}_{\text {RMS }}$	210 V PEAK	$210 \mathrm{~V}_{\mathrm{RMS}}$	$150 \mathrm{~V}_{\text {RMS }}$

Accuracy Frequency range	Limits of error \pm (\% of rdg + \% of			
	AC + DC	AC	AC + DC	AC
0 Hz ... 15 Hz	$\pm(0.15+0.03)$	-	$\pm(0.15+0.03)$	-
15 Hz ... 45 Hz	$\pm(0.15+0.01)$		$\pm(0.15+0.01)$	
$45 \mathrm{~Hz} \quad \ldots \quad 1 \mathrm{kHz}$	$\pm(0.04+0.01)$		$\pm(0.04+0.01)$	
$1 \mathrm{kHzz} \ldots 400 \mathrm{kHz}$	$\pm[(0.04+0.0045 / \mathrm{kHz})+(0.01+0.003 / \mathrm{kHz})]$		$\pm[(0.04+0.0045 / \mathrm{kHz})+(0.01+0.003 / \mathrm{kHz})]$	
$400 \mathrm{kHz} \quad . .1 \mathrm{MHz}$	typical : - 0.5% of rdg. / 100 kHz		typical : - 0.5% of rdg. / 100 kHz	

Additional error for measuring of peak values	$\pm 0.1 \%$ of rng	$\pm 0.1 \%$ of rng
Input Impedance	$10 \mathrm{M} \Omega / / 12 \mathrm{pF}$	$1 \mathrm{M} \Omega / / 30 \mathrm{pF}$
Overload	$1770 \mathrm{~V}_{\mathrm{RMS}} / 2500 \mathrm{~V}_{\mathrm{PEAK}}$ continuously	
(in all ranges)	$500 \mathrm{~V}_{\mathrm{RMS}} / 700 \mathrm{~V}_{\mathrm{PEAK}}$ continuously	
(in all ranges)		

Limits of error valid for 24 months after calibratrion at inputs of $3 \ldots 100 \%$ of measuring range and $(23 \pm 5)^{\circ} \mathrm{C}$

Current channel 6111

Plug-in unit for the connection of a triaxial shunt, a shunt adapter (for external high current shunts), the clamp-on transformer 61C1, or the LEM transducer set IT. Via a 9pol socket the shunts or transformers are identified automatically.

Measuring range	Max. input		Measuring range	Max. input	
	DC, square	sine		DC, square	sine
50 mV PEAK	50 mV RMS	35 mV RMS	50 mV PEAK	50 mV RMS	35 mV RMS
158 mV PEAK	158 mV RMS	110 mV RMS	158 mV PEAK	158 mV RMS	$110 \mathrm{mV}_{\text {RMS }}$
500 mV PEAK	500 mV RMS	350 mV RMS	500 mV PEAK	500 mV RMS	350 mV RMS
1580 mV ${ }_{\text {PEAK }}$	1580 mV ${ }_{\text {RMS }}$	1100 mV RMS	1580 mV PEAK	1580 mV RMS	1100 mV RMS

Current channel 6112

Like current channel 6111 but with even higher angular accuracy. This current channel is used in the transformer version and in all applications that depend on high accuracy at small power factors.

Current channel 6113

Like current channel 6111 but with lower measuring ranges. Thus results a higher dynamic range at current measurements in connection with the triaxial shunts.

Current channel 6111 with triaxial socket for shunt identification

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline 1580 \mathrm{mV}_{\text {PEAK }} & 1580 \mathrm{mV} \text { RMS } & 1100 \mathrm{mV} \text { RMS } & 1580 \mathrm{mV}_{\text {PEAK }} & 1 \\
\hline
\end{array}
$$

Accuracy Frequency range	Limits of error			\pm (\% of rdg + \% of rng)		
	Range 50 mV	Ranges 158... 1580 mV	Range 50 mV	Ranges 158... 1580 mV	Range 15.8 mV	Ranges $50 . . .500 \mathrm{mV}$
	AC + DC		AC + DC		AC + DC	
$0 \mathrm{~Hz} \ldots 15 \mathrm{~Hz}$	\pm (0.15+0.05)	\pm (0.15+0.03)	$\pm(0.15+0.05)$	\pm (0.15 + 0.03)	$\pm(0.15+0.05)$	$\pm(0.15+0.03)$
	($\mathrm{AC}+\mathrm{DC}$) and AC		($\mathrm{AC}+\mathrm{DC}$) and AC		($\mathrm{AC}+\mathrm{DC}$) and AC	
$15 \mathrm{~Hz} \ldots 45 \mathrm{~Hz}$	$\pm(0.15+0.03)$	$\pm(0.15+0.01)$	$\pm(0.15+0.03)$	$\pm(0.15+0.01)$	$\pm(0.15+0.03)$	$\pm(0.15+0.01)$
$45 \mathrm{~Hz} \ldots .1 \mathrm{kHz}$	$\pm(0.04+0.02)$	$\pm(0.04+0.01)$	$\pm(0.04+0.02)$	$\pm(0.04+0.01)$	$\pm(0.04+0.02)$	$\pm(0.04+0.01)$
$1 \mathrm{kHz} . . .100 \mathrm{kHz}$	$\begin{aligned} & \pm[(0.04+0.0045 / \mathrm{kHz}) \\ & +(0.02+0.0045 / \mathrm{kHz})] \end{aligned}$	$\begin{gathered} \pm[(0.04+0.0045 / \mathrm{kHz}) \\ +(0.01+0.003 / \mathrm{kHz})] \end{gathered}$	$\pm[(0.04+0.02 / \mathrm{kHz})$	$\pm[(0.04+0.0045 / \mathrm{kHz})$	$\pm[(0.04+0.0045 / \mathrm{kHz})$	$\pm[(0.04+0.0045 / \mathrm{kHz})$
			+(0.02+0.0045/kHz)]	$+(0.01+0.003 / \mathrm{kHz})]$	$+(0.02+0.0045 / \mathrm{kHz})$	+(0.01+0.003/kHz)
$100 \mathrm{kHz} . . .400 \mathrm{kHz}$					$\begin{gathered} \text { typical: } \\ -1.5 \% \text { of } \mathrm{rdg} / 100 \mathrm{kHz} \\ \hline \end{gathered}$	
$400 \mathrm{kHz} \ldots 1 \mathrm{MHz}$	typical:	typical:				

Angular error	Between current channel 61 I 1 and voltage channels				Between current channel 6112 and voltage channels					Between current channel 61 I 3 and voltage channels			
Phase angle between voltage and current, in both channels AC+DC-mode, without LP-filter		$0 . . .100 \mathrm{~Hz}$	$100 \mathrm{~Hz} . . .1 \mathrm{kHz}$	Additional error		$\begin{array}{\|c\|} \hline 0 \ldots 45 \mathrm{~Hz} \\ 65 \ldots 100 \mathrm{~Hz} \\ \hline \end{array}$	$\begin{aligned} & \hline 45 \mathrm{~Hz}_{\text {.i }} \\ & 65 \mathrm{~Hz}^{1)} \end{aligned}$	$\begin{gathered} 100 \mathrm{~Hz} . . . \\ 1 \mathrm{kHz} \end{gathered}$	Additional error up to 10 kHz		0...100Hz	$\begin{gathered} \hline 100 \mathrm{~Hz} . . . \\ 1 \mathrm{kHz} \\ \hline \end{gathered}$	Additional error
	Range				Range					Range			
	50 mV	0.015°	0.020°	0.005\%/kHz	50 mV	0.015°	0.002°	0.020°	0.005\%/kHz	15.8 mV	0.015°	0.020°	0.005\%/kHz
	158 mV	0.005°	0.010°	$0.005 \% \mathrm{kHz}$	158 mV	0.005°	0.002°	0.010°	0.005 $/ \mathrm{kHz}$	50 mV	0.005°	0.010°	0.005 $/ \mathrm{kHz}$
	500 mV	0.005°	0.005°	0.005 $/ \mathrm{kHz}$	500 mV	0.005°	0.002°	0.005°	0.005 $/ \mathrm{kHz}$	158 mV	0.005°	0.005°	0.005 $/ \mathrm{kHz}$
	1580 mV	0.005°	0.005°	0.005\% $/ \mathrm{kHz}$	1580 mV	0.005°	0.002°	0.005°	0.005\% kHz	500 mV	0.005°	0.005°	0.005 $/ \mathrm{kHz}$

1) The specification for $45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$ is valid for the voltage ranges $25 \mathrm{~V}_{\mathrm{p}} \ldots 340 \mathrm{~V}_{\mathrm{p}}$ (max. $240 \mathrm{~V}_{\text {RMS }}$)

Limits of error valid for 24 months after calibratrion at inputs of $3 \ldots 100 \%$ of measuring range and $(23 \pm 5)^{\circ} \mathrm{C}$

In the system D 6000 the high demands on accuracy are taken into account additionally by cylindrically designed and shielded triaxial shunts with GUARD connection. A continuous frequency range from DC to up to 1 MHz , amplitude error of 0.03% and negligible phase errors of $0.1^{\circ} / 100 \mathrm{kHz}$ secure accurate results also with mixed quantities, distorted wave forms, high frequencies and small power factors.
The calibration data are stored directly in the shunts and are recognized automatically by the D 6000 - you can measure at once. The certified accuracy data of these highly linear and stable components are also valid for $\mathbf{2 4}$ months after calibration.

Triaxial plug-on shunts
External triaxial shunts
$0.3 \mathrm{~mA} . . .300 \mathrm{~mA}$

Clamp-on transformer 61C1

	Continuous load range	(1 A...) 5 A... 1000 A	
	Frequency range	10 Hz ...5kHz ($\ldots . .30 \mathrm{kHz}$)	
	Overload	1200 A	
	Scale factor	1000 A / 1V	
	Max. conductor diameter	54 mm	
Limits of error \% of rdg	Current		Angle
	$1 \mathrm{~A} . . .5 \mathrm{~A}$	5 A ... 1000 A	
$10 \mathrm{~Hz} \ldots 20 \mathrm{~Hz}$	± 0.4	± 0.2	1.5°
$20 \mathrm{~Hz} \ldots 45 \mathrm{~Hz}$	± 0.4	± 0.2	$0.8{ }^{\circ}$
$45 \mathrm{~Hz} \quad \ldots 65 \mathrm{~Hz}$	± 0.3	± 0.2	$0.3{ }^{\circ}$
$65 \mathrm{~Hz} \quad \ldots .1 \mathrm{kHz}$	± 0.4	± 0.2	0.3°
1 kHz ... 5 kHz	± 0.4	± 0.4	$1{ }^{\circ}$
5 kHz ... 20 kHz	± 0.4	± 0.4	5°
20 kHz ... 30 kHz	± 1	± 1	5°

Stray field influence : $<0,2 \%$ at 5 A and $400 \mathrm{~A} / \mathrm{m}$

LEM transducer set IT

For all current channels the current measurement can also be made by means of precise active straight-through current transformers in connection with specially adjusted shunt adapters.

	Set IT 150-S	Set IT 600-S
Continuous load range	$1 \mathrm{~A} . .150 \mathrm{~A}$	$5 \mathrm{~A} . . .600 \mathrm{~A}$
Overload	165 A	660 A
Bandwidth	100 kHz	
Frequency range	$0 \ldots 30 \mathrm{kHz}$	
Basic accuracy [\%] at nominal current	± 0.01	
Frequency influence [\%/kHz]	± 0.1	
Angular accuracy [$\% / \mathrm{kHz}$]	± 0.05	
Scale factor	$150 \mathrm{~A} / 400 \mathrm{mV}$	$600 \mathrm{~A} / 400 \mathrm{mV}$
Max. conductor diameter	26 mm	
Mass	1 kg	

SPECIFICATION - Power Measurement

The limits of error F_{p} for active power consist of the limits of error of the voltage channel F_{V}, the current channel F_{A}, the shunt $F_{S h}$ and the angle F_{W}.
F_{p} is calculated according to international agreement:

$$
\mathrm{F}_{\mathrm{p}}=\frac{2}{\sqrt{3}} * \sqrt{\mathrm{~F}_{\mathrm{v}}^{2}+\mathrm{F}_{\mathrm{A}}^{2}+\mathrm{F}_{\mathrm{Sh}}^{2}+\mathrm{F}_{\mathrm{W}}^{2}}
$$

Voltage channel error F_{V} : from the specifications of voltage channels 61U1 or 61U2
Current channel error F_{A} : from the specifications of current channels 61 । 1,61 । 2 or 61 । 3
Shunt error F_{Sh} : from the specifications of the selected shunt
Angular error F_{W} : depends on the input of the power measuring range, the power factor $(\cos \varphi)$ and the sum of angular errors $\Delta \varphi$ of the particular current channel $F_{G W}$ and the shunt $\mathrm{F}_{\text {SW }}$ (or transformer) ($F_{G W}$ and $F_{S W}$ from the particular specifications)

$$
F_{W}=\sqrt{\frac{I_{N} * U_{N}}{I_{N}}} * \frac{\cos (\varphi+\Delta \varphi)-\cos \varphi}{\cos \varphi} * 100
$$

Results / important key results of these calculations:

Limits of error for active power $\quad \pm \%$ of rdg for S and M				
Frequency	Power factor $(\cos \varphi)$			
	1	0.5	0.1	
1 Hz	0.296	0.296	0.313	
50 Hz	0.089	0.091	0.138	
1 kHz	0.089	0.097	0.238	
10 kHz	0.211	0.31	1.32	
100 kHz	1.32	2.5		
400 kHz	5.04			

Limits of error for active power		$\pm \%$ of rdg at 50 Hz
Power factor $(\cos \varphi)$	D 6000 T	$\mathrm{D} 6000 \mathrm{~S}, \mathrm{M}$
1	0.089	0.089
0.1	0.1	0.138
0.01	0.472	1.07
0.001	4.64	

Limits of error for active power $\pm \%$ of rdg at 50 Hz				
Input of power measuring range	D 6000 T			$\mathrm{D} 6000 \mathrm{~S}, \mathrm{M}$
	Power factor $(\cos \varphi)$			
	1	0.1	1	0.1
100%	0.089	0.1	0.089	0.138
50%	0.097	0.117	0.097	0.179
10%	0.175	0.228	0.175	0.379

Assumption: worst case of an asymmetrical input (for instance input of power measuring range of 10 \% results from 100 \% input of voltage channel and 10% input of current channel)

Limits of error valid for 24 months after calibratrion at inputs of $3 \ldots 100 \%$ of measuring range and $(23 \pm 5)^{\circ} \mathrm{C}$

b) a switchable lowpass filter $0 \ldots 1 \mathrm{kHz}$ (switched capacitor filter) with 5 selectable filter steps 1.75 / $8 / 35 / 150 / 800 \mathrm{~Hz}$ which offers the following advantages:
1 Improved frequency measurement of highly distorted signals in the range of $0.2 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
1 Better synchronization (Phase Locked-Loop PLL) with highly distorted signals in the range of $8 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$.
Remark: For functions that require synchronized sampling a software controlled synchronization for low frequencies down to 0.5 Hz is also available.

OPTION Data Memory and Analysis 61E1

This option has the following additional functions:
1 Harmonic analysis (DFT or FFT)
1 Evaluation of spectrum (Distortion Factor, Telephone Factor, ...)
1 Data memory (sampled values, average values)
1 Computation of rectified mean values of delta voltages

Harmonic analysis

Discrete Fourier Transformation (DFT)

Principle: \quad Discrete Fourier Transformation with synchronization with the fundamental and rectangular window, switchable anti-aliasing filter (Butterworth, 3rd order, $\mathrm{f}_{\mathrm{c}}=6 \mathrm{kHz}$). The representation can be selected between sinand cos- series.
Computation: DC-component, fundamental and up to the 99th (D6200 : 49th) harmonic of voltage, current and power with the angle between the particular harmonics and their fundamental. The calculation of the harmonics is selectable between RMS-value, \% of total RMS-value or \% of fundamental.

Visualisation, Output of DFT

a) complete spectrum as bargraph or as table on the display, at the thermoprinter or at an external printer.
b) fundamental, single harmonics or weighting factors can also be shown on the display.

Display of the spectrum as bargraph

Display of the spectrum as table

Fast Fourier Transformation (FFT)

Principle: Numeric FFT - algorithm for the calculation of the spectral lines of selectable input quantities. No synchronization is necessary with the measured signal. The FFT also enables the calculation of subharmonics and intermediate harmonics and the analysis of transient or non periodic events.
Computations, measured values: spectral lines of line voltages U_{X}, line currents I_{X}, delta voltages V_{XV} (displayed as RMSvalues) and of active power can be calculated.

Visualisation, Output of FFT

a) Graphical display of complete range of frequency or of selectable frequency window. Also numerical display of the fundamental and the measured quantity under the moveable cursor. b) Numerical display of the fundamental; frequency (f_{01}) and value (e.g. $U_{H_{01}}$). These values can be displayed on the screen stored in memory and displayed graphically, or used for further calculations via userdefined functions.

Specifications of DFT:
Frequency range: max. fundamental frequency: 6.5 kHz
max. harmonic
frequency:
$\mathrm{H}_{09} \ldots 5 \mathrm{kHz} \quad \mathrm{H}_{19} \ldots 1.25 \mathrm{kHz}$
$\mathrm{H}_{49} \ldots 500 \mathrm{~Hz} \quad \mathrm{H}_{99} \ldots 250 \mathrm{~Hz}$
without LP-filter: $20 \ldots 30 \mathrm{kHz}$
(with LP-filter: 12 kHz)
Accuracy of synchronization:
$\pm 0.03 \%$ at $45 . . .65 \mathrm{~Hz}$ (as per IEC 1000-3-2)
Locking range: \quad PLL on: $10 \mathrm{~Hz} . . .6 .5 \mathrm{kHz}$ fundamental frequency PLL off (software controlled synchronization): $0.6 \mathrm{~Hz} . .5 \mathrm{kHz}$ fundamental frequency approx. 200 ms
Setting time:
Limits of error:
Fundamental:

Harmonics:
without LP-filter: for U and $\mathrm{I}: \pm\left(0.02 \%\right.$ of $\mathrm{H}_{01}+0.01 \%$ of $\mathrm{H}_{01} / \mathrm{kHz}$)
for P : sum of errors of U and I
with LP-filter: filter of 3rd order, frequency response of amplitude and phase corrected by software up to 13 kHz
for U and I : up to 6 kHz : $\pm\left(0.1 \%\right.$ of $\mathrm{H}_{01}+0.2 \%$ of $\left.\mathrm{H}_{01} / \mathrm{kHz}\right)$ above 6 kHz : $\pm 1 \%$ of $\mathrm{H}_{01}+2 \%$ of $\mathrm{H}_{01} /(\mathrm{f}-6 \mathrm{kHz})$
for P : \quad sum of errors of U and $I+2$ times phase error; the LP-filter must be ON in both channels.
Phase angle: phase angle is displayed for harmonics with amplitude > 1 \% .
without LP-filter:
with LP-filter:
Noise margin:
Intermodulation: $\quad<0.05 \%$ of H_{01}

Display of fundamental and THD

Specifications of FFT :
Sampling frequency: 65.536 kHz (fixed frequency)
Length: 4096 points
Frequency ranges: 8 frequency ranges, 0 ... 150 / 300 / 600 /
Resolution:
Window function:
Limits of error: based on the limits of error for voltage,
1200 / $2500 / 5000 / 10000 / 32000 \mathrm{~Hz}$ 0.125 / 0.25 / $0.5 / 1 / 2 / 4 / 8 / 16 \mathrm{~Hz}$ Hanning ($\cos ^{2}$), with subsequent arithmetical smoothing current and power.
Additional error for the calculated spectral values:
\pm (0.5% of rdg $+0.1 \%$ of rng)
Bandwith (-6 dB): approx. 3.7 * resolution

Display of spectral lines

Weighting of the spectrum (single DFT)

According to international standards
1 distortion factor K
1 telephone harmonic factor THF
1 telephone influence factor TIF
1 harmonic voltage factor HVF
can be calculated instead of the spectrum.
Distortion factor (K or THD):
Calculation: $\quad \mathrm{K}$ (in \%) is calculated as per DIN VDE for voltage and current (for each channel). The distortion factor K is also refered to as Total Harmonic Distortion THD .
$K(\%)=\frac{\sqrt{U_{\mathrm{rms}}^{2}-U_{\mathrm{H} 01}^{2}}}{U_{\mathrm{rms}}} * 100$
Resolution: $\quad 1$ digit $(\mathrm{d})=0.01$ \% THD
Limits of error: at THD > 0.2 \%: +1 d
THD 0.1 \% .. 0.2 \%: +2d
Telephone Harmonic Factor (THF)
Calculation: by weighting of all harmonics up to 5 kHz according to the weighting curve in DIN VDE 0530 part 1 ; IEC 34-1 ; ÖVE M 10 part 1 / 1987. Afterwards summation of the squares of the weighted harmonics according to the formula:
$\operatorname{THF}(\%)=\frac{1}{\mathrm{U}} \sqrt{\left(\mathrm{U}_{\mathrm{HO1}}{ }^{*} \lambda_{\mathrm{H} 01}\right)^{2}+\left(\mathrm{U}_{\mathrm{H} 02}{ }^{*} \lambda_{\mathrm{H} 02}\right)^{2}+\ldots \ldots . .+\left(\mathrm{UH}_{\mathrm{Hn}}{ }^{*} \lambda_{\mathrm{Hn}}\right)^{2}}{ }^{*} 100$
U ... RMS - value of the line voltage of the machine
$U_{H n} \ldots$ RMS - value of the n-th harmonic of the line voltage
$\lambda_{H n} \ldots$ weighting factor for the $n^{-t h}$ harmonic according to table OVE M10
Telephone Influence Factor (TIF)
Calculation: similar to THF, but calculation and weighting acc. to IEEE Std. 115-1983 point 3.8 to 3.11 and ANSI C50.13-1977 and ANSI / IEEE
Std. 100 / 1988
TIF $=\frac{\mathrm{U}_{\mathrm{TIF}}}{\mathrm{U}_{\mathrm{rms}}} ; \mathrm{U}_{\mathrm{TIF}}=\sqrt{\Sigma\left(\mathrm{T}_{\mathrm{Hn}} \mathrm{U}_{\mathrm{Hn}}\right)^{2}} ;$ Residual TIF $=\frac{\mathrm{U}_{\mathrm{TIF}}}{3 * \mathrm{U}_{\mathrm{rms}}}$
$U_{\text {TIF }} \ldots \quad$ weighted RMS value
$U_{\text {RMS }}$.. RMS value of voltage
$U_{H n} . . \quad$ RMS value of harmonic
$\mathrm{T}_{\mathrm{Hn}} \ldots \quad$ weighting factor as per ANSI / IEEE std. 100 / 1988

Harmonic Voltage Factor (HVF)

Calculation: acc. to IEC publ. 34.1 / 83

Calculation: the rectified mean values of the delta voltages (line-to-line voltages) are calculated according to the formula:

$$
\left|\overline{\mathrm{U}_{\mathrm{xy}}}\right|=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}\left|\mathrm{u}_{\mathrm{x}}-\mathrm{u}_{\mathrm{y}}\right| \mathrm{dt}
$$

Data Memory

The function data memory of the option 61 E1 enables the storage of sampled values (for displaying waveforms or transient processes) or average values (display of sequential diagrams of voltages or load over time and x / y diagrams).
Memory: Standard size 512 kByte. Thus more than 230000 sampled values or more than 65000 average values can be stored.
Extension: using the memory options 61M2,61M4 and 61M8 the memory can be extended up to 16 MB .
Variable: $\quad 12$ variables selectable for simultaneous storage.
Aquisition rate: $14 \mu \mathrm{~s}$... 14 ms (for sampled values) (sample factor from 1 ... 512 selectable) $14 \mathrm{~ms} . . .67 .9 \mathrm{~h}$ (for average values) manual or automatic trigger (level or slope), settable pretrigger, single or multiple trigger selectable .
Limits of error: as for peak values (for sampled values) or average values.
Visualization and Output of the memory contents:
a) graphical with zoom and scroll function
b) table with scroll function
c) printout to an external printer.
d) transferring of the memory contents to an analog recorder

Current sampled values of a converter

Sampled values of a phase controlled current

Output voltage (RMS value) of a converter

[^0]
Option IEC 1000-3

With this option the D 6000 becomes a standard measuring equipment for the testing of electrical appliances as per IEC 1000-32 (current harmonics) and IEC 1000-3-3 (voltage fluctuations and flicker). Electrical appliances that are supposed to be connected to the public low voltage distribution system have to fullfil these standards
These standards are valid e.g. for household appliances. The compliance with the IEC 1000-3 standard is a requirement for CE certification.

The compliance with the demands on accuracy of the D 6000 according to the standards, has been testified by independent international certifying bodies
IEC 1000-3-2 : definition of device classes measurement of current harmonics guideline for tolerable limits
IEC 1000-3-3 : measurement of flicker measurement of voltage fluctuations guideline for tolerable limits

IEC 1000-3-2

Before starting the measurement of current harmonics the device under test has to be assigned to one of the four device classes (A to D)
Class A: balanced three-phase equipment and all other equipment except those listed in one of the following classes.
Class B: portable electric tools
Class C : lighting equipment
Class D: equipment with "special wave shape" that consumes active power of 75 W to 600 W and is not motor driven. This "special wave shape" and the conditions for class D are exactly stated in the standard. The D 6000 performs an automatic Class D - check and gives a "PASS / FAIL" information.

Principle of measurement and classification:
As per IEC 1000-3-2 a Discrete Fourier Transformation (DFT) is made up to the 40th harmonic synchronized with the fundamental within ± 0.3 \%.
The rectangular window is gapless over 16 periods of the fundamental. Each harmonic is filtered by a RC - filter (1st order with 1.5 s).

Depending on the appliance a test for steady state harmonics or fluctuating harmonics has to be done, as there are different conditions for the transient (short time) operation.

Steady state harmonics (settled stable operating state):
The harmonics (average of 16 periods) are compared with the limits of the standard and exceedings are indicated (PASS / FAIL information).

Fluctuating harmonics (altering operating state):
A sliding consideration window of 2.5 minutes is shifted further on for always 16 periods. Even harmonics of 2 nd to 10 th order and odd harmonics of 3rd to 19th order must not exceed 1.5 times the limit for "steady state" during 10% of any random observation time.

Visualization, Output:
For every single measurement the results with corresponding PASS / FAIL information can be visualized as bargraph or table on the graphic display or are printed out.

Visualisation of the spectrum as bargraph with limits, exceedings and FAIL information

After the end of the test the complete result can be printed in form of a table on an external printer.

Test report according to class C / fluctuating FAIL information (see indications with *)

In case of a FAIL test the D 6000 offers practical help for finding the reason, by displaying the time sequence of the critical harmonics in combination with the limit (3-phase: 11, single-phase: 33 minutes per MB of memory).

Time sequence of the 5th harmonic with indicated violations

IEC 1000-3-3

This part of the standard concerns the measurement of the flicker and the registration of the voltage fluctuations. Load changes of electric equipment cause voltage fluctuations as a result of the line impedance. These must not exceed certain values (because of malfunction of other technical devices), they also must not occur with a certain rate (frequency), because in that case flicker (changes of illuminance) disturb the human eye. The sensitivity curve exactly states which changes of voltage are permissable at a certain changing frequency. This curve defines the flicker Ps = 1 and means that this flicker is just being sensed as disturbance by 50% of the people. Therefore a standard-conforming flickermeter must simulate the exact functional chain lamp - eye - brain.

Measuring of Flicker:

Principle: The used flickermeter is exactly defined in IEC 868. Stated demodulation, weighting filter and averaging by a low pass of 1 st order secure the simulation of the above mentioned functional chain. According to this evaluation you get the so-called actual flicker (analog output 0-10 V).

Evaluation and Output:

The actual flicker is used for the calculation of the cumulative frequency distribution, short term flicker P_{ST} and long term flicker P_{LT}.

Cumulative Probability:

The actual flicker is statistically evaluated (1024 classes) and visualized. The cumulative probability states, for how many \% of the observation period the flicker has exceeded one of the 1024 classes. Measurement times of $1,5,10$ or 15 minutes are selectable.

Cumulative probability of the actual flicker with maximum pointer for indicating the highest value

Short Term Flicker $P_{S T}$:

Measuring times of $1,5,10$ or 15 minutes are selectable. For the computation of $P_{S T}$ a linear pre-smoothing is carried out:

$$
\begin{aligned}
& P_{505}=\frac{\left(P_{30}+P_{50}+P_{80}\right)}{3} \\
& P_{105}=\frac{\left(P_{6}+P_{8}+P_{10}+P_{13}+P_{17}\right)}{5} \\
& P_{3 S}=\frac{\left(P_{2,2}+P_{3}+P_{4}\right)}{3} \\
& P_{1 S}=\frac{\left(P_{0,7}+P_{1}+P_{4}\right)}{3}
\end{aligned}
$$

With these values the $P_{S T}$ is computed by means of a weighted five point alogorithm:
$P_{S T}=\sqrt{\left(0.0314 P_{0.1}+0.0525 P_{1 S}+0.0675 P_{3 S}+0.28 P_{10 S}+0.08 P_{50 S}\right)}$

Long Term Flicker P_{LT} :

For a selectable period the long term flicker is calculated according to a cubic smoothing:

$$
\boldsymbol{P}_{\boldsymbol{L} \boldsymbol{T}}=\sqrt[3]{\frac{\sum_{i=1}^{N} P_{s t i}^{3}}{N}}
$$

Selection of Limiting Values:

The input of the limiting values $\left(\mathrm{P}_{\mathrm{ST}}, \mathrm{P}_{\mathrm{LT}}\right)$ is done by the tester. Default values of $\mathrm{P}_{\mathrm{ST}}=1.0$ and $\mathrm{P}_{\mathrm{LT}}=0.65$ are pre - set.

Output in form of Tables

During the selected measuring time you can observe on the display how the actual flicker, short term- and long term flicker (with their peak values) develop in all three phases. The key values for the evaluation of the voltage fluctuations are also displayed on this monitor.

Table for flicker and voltage fluctuation in a three-phase system

PASS / FAIL decisions are automatically assigned to the results. In order to find the reasons for too high flicker values the actual flicker can be displayed over time (22 minutes per MByte of memory)

Actual flicker over time

Measurement of Voltage Fluctuations:

Voltage fluctuations are measured without the weighting filters used for flicker measurement. A voltage fluctuation is defined by the key values in the following diagram:

$U_{\text {OLD }}$	stable operating voltage
d_{C}	remaining voltage deviation
$U_{\text {NEW }}$	new stable operating voltage
d_{t}	time, until setting to $U_{\text {NEW }}$

Key values of a voltage fluctuation
Selection of limiting values:
The input of the limiting values ($d_{\text {max }}, d_{C}$ and d_{t}) is done by the tester. Default values of $\mathrm{dm}=4.0 \%, \mathrm{~d}_{\mathrm{C}}=3.0 \%$ and $d_{t}=200 \mathrm{~ms}$ are pre - set.

Report:

The complete test acc. to IEC 1000-3-3 with its results can be logged on an external printer.

Testing report of a flicker measurement

Set models	Standard System				Motor System				Trafo System	
Basic instruments Measuring channels/interfaces	P 1 phase A460330711	$\begin{gathered} 1 \text { phase } \\ \text { A460330721 } \end{gathered}$	P 3 phase A460330712	$\begin{gathered} 3 \text { phase } \\ \text { A } 460330722 \end{gathered}$	P 3 phase A 460330714	$\begin{gathered} 3 \text { phase } \\ \text { A } 460330724 \end{gathered}$	P 6 phase A4603 30715	$\begin{gathered} 6 \text { phase } \\ \text { A } 460330725 \end{gathered}$	P 3 phase A 460330713	$\begin{gathered} 3 \text { phase } \\ \text { A } 460330723 \end{gathered}$
D 6100 Basic (4 HE) with display, keyboard and printer A 460330500	\bullet		\bullet		-				-	
D 6200 Basic (8 HE) with display, keyboard and printer A 460330501							-			
$\begin{aligned} & \text { D } 6100 \text { Basic (4 HE) } \\ & \text { without printer } \\ & \text { A } 460330540 \end{aligned}$		\bullet		\bullet		\bullet				\bullet
D 6200 Basic (8 HE) without printer A 460330541								\bullet		
Voltage channel 61U1 A 460330505	1	1	3	3	3	3	6	6	3	3
Voltage channel 61U2 A 460330515										
Current channel 6111 A 460330506										
Current channel 6112 A 460330516									3	3
Current channel 6113 A 460330526	1	1	3	3	3	3	6	6		
$\begin{aligned} & \text { Interface 61D1 } \\ & \text { A } 460330507 \end{aligned}$	-	-	\bullet	-					\bullet	-
$\begin{aligned} & \text { Interface 61D2 } \\ & \text { A } 460330508 \end{aligned}$					-	\bullet	-	\bullet		
$\begin{array}{\|l} \hline \text { Interface 61D3 } \\ \text { A } 460330519 \\ \hline \end{array}$										

Basic instruments (for purely remote control)

D 6300 Basic (4 HE) without display, keyboard, printer D 6400 Basic (4 HE) without display, keyboard, printer

Data memory and harmonic analysis 61E1 IEC 1000-3
Data memory extension 61M4 (4 MB)
Data memory extension 61M8 (8 MB)
Option Digital Torque Measurment 61 T1
Triaxial Shunts (plug-on)
$0.3 \mathrm{~mA}(3 \mu \mathrm{~A} . .3 \mathrm{~mA})$
A 460330504
A 460330509
$3 \mathrm{~mA}(30 \mu \mathrm{~A} \ldots 30 \mathrm{~mA})$
$30 \mathrm{~mA}(300 \mu \mathrm{~A} . . .300 \mathrm{~mA})$
0.1 A ($1 \mathrm{~mA} . . .1 \mathrm{~A}$)
$0.3 \mathrm{~A}(3 \mathrm{~mA} . .3 \mathrm{~A})$
$3 \mathrm{~A}(30 \mathrm{~mA} \ldots 10 \mathrm{~A})$
10 A (0.1 A ... 30 A)
16 A: IEC 1000 (0.3 A... 50 A)
30 A (1 A ... 100 A)

Triaxial Shunts (external)

100 A (6 A ... 300 A)
300 A (18 A ... 1000 A)
$450 \mathrm{~A}(10 \mathrm{~A} . . .450 \mathrm{~A})$
500 A (18 A ... 1500 A)
Triaxial Switching Unit

A 460330565
A 460331000
A 460330572
A 460330573
A 460330574

A 641400021
A 641400022
A 641400023
A 641400013
A 641401001
A 641401010
A 641401030
A 641401050
A 641401100

A 641401300
A 641401340
A 641401500
A 641401350
A 641401016

Various additional connection adapters and extension cables are
offered. Individual solutions are possible.
Please ask your local distributor.

Current clamp 61 C 1 with connection adapter LEM Transducer set IT 150-S single phase LEM Transducer set IT 150-S three phase LEM Transducer set IT 600-S single phase LEM Transducer set IT 600-S three phase

A 460331013
A 641602033
A 641602034
A 641602035
A 641602036

- standard

1, 2, 3, 6.......... standard number of channels Individual configuration: Your Power Analyzer can be configured according to your special requirements.

Accessories

Cable for D 6000 analog out A 600281081
Cable for D 6000 torque / speed in A 600281082
Cable for D 6000 EXT TRIGGER or SYNC IN A 600281074 Ground lead

A 600281080
19" rack mounting kit for D 6000 (4 HU)
A 649900069 (please use 2 kits for models 8 HE)
Star point adapter for voltage channels (61U1)
A 641602016
(please us 3 pcs for forming an artificial star point)
High voltage divider 500:1, single phase, 5 kV rms
A 641602018
Carrying case for D 6000 (4 HU)
A 600133005
Paper roll for D 6000 thermo printer 61 P2 (3 pcs.) A 620296200
Operating instructions
A 4603 51GA5
External relay box 61 R1
A 460330562 with 6 built ins relays $250 \mathrm{~V} / 2 \mathrm{~A}$
For details and additional accessories please ask your local distributor.
PC Software

PowerWin 6000 demo package	A 689900163
PowerWin 6000 1. licence	A 689900161
PowerWin 6000 add licence	A 689900162
Lab Windows driver for D 6000	A 689900151
Lab View driver for D 6000	A 689900200
Data - Transfer software for D 6000	A 689900160
Screen - Copy - software for D 6000 A 689900155 Hint:For use of the IEEE 488 Instruments interface we recommend National	

Test Certificates

We offer various test certificates.
Please ask your local distributor.

[^0]: Current and voltage at the output of a converter

